Поиск
?


Скопировать ссылку на результаты поиска



Всего: 3    1–3

Добавить в вариант

ABCDA1B1C1D1  — пря­мо­уголь­ный па­рал­ле­ле­пи­пед такой, что AB=12, AD=3. Через се­ре­ди­ны ребер AA1 и BB1 про­ве­де­на плос­кость (см.рис.), со­став­ля­ю­щая угол 60° с плос­ко­стью ос­но­ва­ния ABCD. Най­ди­те пло­щадь се­че­ния па­рал­ле­ле­пи­пе­да этой плос­ко­стью.

1) 72
2) 36 ко­рень из 3
3) 36
4) 18
5) 36 ко­рень из 2

Аналоги к заданию № 106: 556 586 616 ... Все


Через точку A вы­со­ты SO ко­ну­са про­ве­де­на плос­кость, па­рал­лель­ная ос­но­ва­нию. Опре­де­ли­те, во сколь­ко раз пло­щадь ос­но­ва­ния ко­ну­са боль­ше пло­ща­ди по­лу­чен­но­го се­че­ния, если SA : AO = 2 : 3.

1)  целая часть: 6, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 4
2)  целая часть: 7, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 4
3)  целая часть: 2, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 4
4)  целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2
5)  целая часть: 2, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2

Аналоги к заданию № 1044: 1074 1104 Все


Задание № 2188
i

В тре­уголь­ной пи­ра­ми­де SABC бо­ко­вое ребро SA пер­пен­ди­ку­ляр­но плос­ко­сти ос­но­ва­ния ABC. Через се­ре­ди­ны ребер AB и SB про­ве­де­на се­ку­щая плос­кость, па­рал­лель­ная ребру BC. Най­ди­те зна­че­ние вы­ра­же­ния 3 · S, где S  — пло­щадь се­че­ния пи­ра­ми­ды этой плос­ко­стью, если BC  =  6, SA  =  8.


Аналоги к заданию № 2188: 2218 Все

Всего: 3    1–3